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Radiomic features are being increasingly studied for clinical applications. We aimed to assess the agreement
among radiomic features when computed by several groups by using different software packages under very
tightly controlled conditions, which included standardized feature definitions and common image data sefs.
Ten sites (9 from the NCI's Quantitative Imaging Network] positron emission tomography-computed tomogra-
phy working group plus one site from outside that group) participated in this project. Nine common quantita-
tive imaging features were selected for comparison including features that describe morphology, intensity,
shape, and texture. The common image data sets were: three 3D digital reference objects (DROs) and 10
patient image scans from the Lung Image Database Consortium data set using a specific lesion in each scan.
Each object (DRO or lesion) was accompanied by an already-defined volume of interest, from which the fea-
tures were calculated. Feature values for each object (DRO or lesion) were reported. The coefficient of varia-
tion (CV), expressed as a percentage, was calculated across software packages for each feature on each
object. Thirteen sets of results were obtained for the DROs and patient data sets. Five of the 9 features
showed excellent agreement with CV < 1%; 1 feature had moderate agreement (CV < 10%), and 3 features
had larger variations (CV > 10%) even after attempts at harmonization of feature calculations. This work
highlights the value of feature definition standardization as well as the need to further clarify definitions for
some features.
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INTRODUCTION (tissues, suspected pathology, and anatomic regions) contained

Radiomics is described as the high-throughput extraction of large
amounts of image features from radiographic images (1-4).
Radiomic features provide quantitative descriptions of objects

within the image data. These mathematical descriptors provide
ways to characterize the size, shape, texture, intensity, margin,
and other aspects of the imaging features of these objects, with
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the eventual goal of being able to accomplish a diagnostic imag-
ing task, such as distinguishing benign from malignant nodules,
assessing response to therapy, correlating imaging with genomics,
or decoding the object’s imaging phenotype and predicting sur-
vival outcomes (5). Within the NCI's Quantitative Imaging
Network (6), there are concerted efforts to bring quantitative
imaging and radiomic features into clinical trials to aid in treat-
ment evaluation. Among specific efforts have been investigations
into these clinical tasks as well as the sensitivity of extracted
radiomic feature values to various aspects of the quantitative
imaging chain such as image segmentation (7-8).

Despite the widespread use of radiomic features and even the
public availability of software packages to compute radiomic
features (9-12), there has been a lack of consistency in the defini-
tion of radiomic feature values and how they are calculated. This
may be a factor contributing to the lack of reproducibility of results
across different data sets and different institutions and specifically
across different software packages that perform radiomic feature
calculations. Recently, there has been an effort to standardize
feature definitions as described by the Image Biomarker
Standardization Initiative (IBSI), which has published a reference
manual (13). This reference manual has described a large number
of features in detail and has even introduced conventions that pro-
vide unique codes to identify each of these features.

Therefore, the primary purpose of this study was to investi-
gate the level of agreement in radiomic feature values that could
be achieved across a set of institutions and software packages
when using a set of common feature definitions, common image
data sets (digital reference objects and patient data sets) and
common object definitions (segmentations). Ideally, under these
controlled conditions, all institutions and software packages
would obtain the same values for all radiomic features for all
objects. A secondary purpose of this study was to identify the
underlying issues when that did not occur (when there were fea-
ture value disagreements) and to address those issues when pos-
sible. It should be pointed out that the goal of this study was to
neither determine the utility of the identified features nor identify
superiority of a single tool, in any specific clinical task. That is,
this study does not evaluate which features demonstrate efficacy
in predicting whether a lung lesion is benign or malignant or
whether a patient is responding to therapy. This study also does
not assess how sensitive various features are to different sources of
variability in the quantitative imaging chain such as object seg-
mentation or image acquisition and reconstruction parameters;
these issues are being addressed in other efforts (7, 14-17). The pri-
mary goal is to ascertain how much detail is necessary to be
reported on future studies to sufficiently describe a feature such
that investigators at different institutions and/or using different
software packages can produce consistent results. We consider this
to be a very important step in the process of developing robust
radiomic features that will ultimately contribute to the use of quan-
titative imaging methods in clinical trials and clinical practice.

METHODOLOGY

Overview

This project was initiated by the positron emission tomography-
computed tomography working group of the National Cancer
Institute’s Quantitative Imaging Network. Ten sites participated
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in the investigation, which took place in 4 phases. In the first
phase, a small subset of radiomic features were identified that
would make this project feasible to pursue with some depth. In
the second phase, radiomic feature values were calculated by
participating sites on a set of digital reference objects (DROs) to
help identify potential issues. In the third phase, radiomic feature
values were calculated by participating sites for identified objects
in a small set of patient image data sets [identified lung nodules
from the Lung Image Database Consortium (LIDC) data set (18)].
In the fourth phase, an effort was made to specifically harmonize
the methodology for calculating one of the more complex radio-
mic features and to determine if the level of agreement could be
improved. Each of these phases is described in more detail in the
following sections.

Features Selected and Their Definitions

Investigators involved in the project agreed to identify 9 radio-
mic features to be investigated for this project. This subset of fea-
tures was selected to simultaneously keep the number of features
to a manageable level for this project while including features
from several key categories including morphology (size and
shape), intensity, and image texture. The IBSI reference manual
(13) was identified as a reference, and feature definitions would
be consistent with the definitions and conventions of that
resource. Note that where the IBSI reference manual is cited, the
section numbers and codes provided are from Version 10.

All features are defined for an identified object whose
boundary is the volume of interest (VOI) accompanying each
DRO or patient image data set. The 9 specific features selected for
analysis were:

1. Approximate volume (IBSI Section 3.1.2; code YEKZ):
This feature is a commonly used size descriptor that counts
the number of voxels within an identified object and multi-
plies by the voxel size in cubic millimeter. Therefore, the
volume is expressed in cubic millimeter.

2. 2D diameter: Although this feature is commonly used in
oncology assessments such as RECIST and Lung-RADS
(19), it is not described in the IBSI reference manual. For
this investigation, we agreed to calculate the diameter in a
single axial slice. However, sites were allowed flexibility in
both how the slice was selected and in how the longest di-
ameter was calculated. For example, some sites calculated
the longest chord from all boundary points on each slice
and chose the largest of these as the 2D diameter. Others
calculated the longest chord on the slice with the largest
area and chose this as the 2D diameter. In all cases, the 2D
diameter was specified in millimeter.

3. 3D diameter (IBSI Section 3.1.11, code L0JK): This feature
is the distance between the 2 most distant vertices from the
set of boundary voxels in the VOIL These vertices are not
constrained to lie in the same image plane. In this project,
the diameter was specified in millimeter.

4. Mean intensity (IBSI Section 3.3.1, code Q4LE): This fea-
ture is the mean intensity value over the VOI. In this pro-
ject, because the patient image data sets were computed
tomography (CT) scans, and the DROs were scaled apropos
to CT scans, the mean intensity was specified in Hounsfield
Units (HU).
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5. Standard deviation: This feature is not explicitly defined
by the IBSI reference manual; however, it does define the
“intensity variance” (Section 3.3.2, code ECT3). In this pro-
ject, the standard deviation in HU was defined as the
square root of the intensity variance.

6. Kurtosis (IBSI Section 3.3.4, code IPH®6). This feature is
technically referred to as the excess kurtosis and is based
on the fourth moment of the intensity distribution and is
used as a measure of peakedness in that intensity distribu-
tion. It should be noted that in this definition, kurtosis is
corrected by a Fisher correction of —3 to center it on 0O for
normal distributions. This feature is dimensionless.

7. Surface area (IBSI Section 3.1.3, code C0JK): This feature
is calculated based on the mesh approach described in IBSI
Section 3 and specifically from a VOI mesh defining the
surface of the object by summing over the triangular face
surface areas (mmz) of the mesh.

8. Sphericity (IBSI Section 3.1.8, code QCFX): This dimen-
sionless feature describes how sphere-like the volume is. It
is based on the ratio between volume (calculated from the
mesh used for surface area, not the approximate volume
feature used in this study) and surface area.

9. Gray Level Co-occurrence Matrix entropy (IBSI Section
3.6.4, code TU9B): This feature is described as “Joint
Entropy” by the IBSI reference manual and is a texture
measure described by Haralick et al. (20) using the Gray
Level Co-occurrence Matrix (GLCM) approach. In the IBSI
reference manual, there are descriptions of how the matri-
ces are formed and how the features are aggregated (6 dif-
ferent methods for aggregation are described). In the first
phases of this project, sites used whatever their local soft-
ware package allowed in terms of aggregation and other
parameters. In the final phase of this project, there was an
effort to harmonize the approaches and parameters for this
feature. This will be described in more detail in the follow-
ing sections. This feature is dimensionless.

Image Data Sets

This study used 2 different image data sets. The first data set was
a set of DROs created by the participants from Stanford (21). The
second data set was a set of 10 patient image studies from the
publicly available Lung Image Database Consortium (18) collec-
tion hosted on the The Cancer Imaging Archive (TCIA) website
(22). For each data set (DRO and patient data sets), we identified
a specific object for use in this project. One VOI was created for
each object and all sites used that same VOI definition. Based on
our experience with a previous project (7), both DICOM and NIfTI
formats were created for each image data set and the VOI was
provided in each format as well (DICOM Segmentation Object
(DS0) as well as NIfTI segmentation boundary). All image data
(DRO and patient image data) as well as VOIs in both DSO and
NIfTI formats are publicly available at https://doi.org/10.7937/
tcia.2020.9era-gg29.

DROs. The DROs were created by the participants at Stanford
and served as a starting point for our analysis (21). These DROs
are generated from continuous 3D functions with known “fea-
tures” (eg, volumes, mean intensities) that are sampled and stored
as DICOM (or NIfTI) images. These features have settable
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parameters and known definitions as specified in (21). For this
project, the DROs were created with a 512 x 512 matrix similar
to typical CT images and used a 500-mm display FOV. The slice
thickness and spacing were each set to 1.0 mm. This results in
voxels that are ~1.0 x 1.0 X 1.0mm. The intensity of the DROs
were defined using mathematical functions that set the internal
gray values. These values can be converted to specific intensity
values (eg, HU for CT) when desired. The DROs used in this study
used the DICOM fields of rescale intercept [(0028, 1052) with a
value of —1024] and rescale slope [(0028, 1053) with a value of
1] similar to CT images. Saved as conventional medical images,
these objects can have the same radiomics operations applied to
them as to patient images, allowing the accuracy of feature cal-
culations to be determined in a controlled fashion. This is of sub-
stantial value when trying to achieve the same feature values
across software packages, and these objects play a vital role in
helping sites diagnose underlying issues.

Figure 1 shows the 3 DROs used in this study; each was
designed to exercise different radiomic features. The DROs cre-
ated for this project were: (1) a mathematically defined sphere
with a radius of 100 mm and with uniform intensities (100 HU)
for all voxels within the VOI; (2) a mathematically defined sphere
with a radius of 100 mm, but having intensity variation that is si-
nusoidal in 3 dimensions with a mean of 100 HU, an amplitude
of 50 HU, and a wavelength of 10mm (3) a uniform intensity
(100 HU) object with a nonspherical shape that is described by a
sinusoidal variation in the location of the surface with a mean ra-
dius of 100 mm, an amplitude of 20 mm, and unitless azimuthal
and inclination angular frequencies of 9 (ie 9 “bumps” in a cross
section). More detailed descriptions are available in the study by
Jaggi et al. (21), and the DROs are publicly available in DICOM and
NIfTI formats at: https://doi.org/10.7937 [tcia.2020.9era-gg29 .

Patient Data Sets. The patient data sets for this study were a
subset of patient data sets used in a previous study (7, 14).
Specifically, the same 10 cases selected from the LIDC data set
(18) that were used in that previous study were used in this study
(see details of cases in the online supplemental Appendix). As in
that previous study, a single lesion from each case was identi-
fied for analysis. That previous study generated VOIs using
algorithms from 3 academic institutions and each method per-
formed three repeat runs on each nodule. For this study, and
to eliminate one source of variability, 1 VOI was created for
each lesion and all sites used that same VOI definition. The
specific VOI chosen for each lesion was the first run of the first
algorithm [Algorithm 1 in Kalpathy-Cramer et al. (14)]. Based
on our experience with that previous project (7), both DICOM
and NIfTI formats were created for each image data set, and
the VOI was provided in each format as well (DSO and NIfTI
segmentation boundary).

Three example lung lesions are shown in Figure 2. The online
supplemental Appendix contains a table with details about the
lesions including a description of which LIDC data set was used
and the range of nodule sizes and densities (1 nodule was clearly
calcified). That table also shows that 5 of the 10 cases used contig-
uous reconstructions (slice spacing = slice thickness), while the
other 5 used overlapped reconstructions (slice spacing < slice
thickness). Finally, this table also shows that images acquired
from different scanners (GE vs Philips) used different values for
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Area: 25.199 cm?
Mean: 100.0 HU
Std Dev: 0.0 HU

Area: 36.961 cm?
Mean: 99.2 HU
Std Dev:123.8 HU

Area: 24.800 cm?
Mean: 100.0 HU
Std Dev:10.0 HU

(E)

the conversion from gray levels to HU (DICOM tag rescale inter-
cept; image data sets from GE scanners used —1024 as the rescale
intercept, while image data from Philips scanners used rescale
intercept of —1000).

Feature calculation results were received from 10 different sites.
Some sites submitted results from 2 different software packages.
The software packages were primarily developed by the partici-
pating institutions with the exception of PyRadiomics (10, 23)
which is an open source Python-based radiomics package that 3
different sites used (1 used only PyRadiomics and 2 other sites
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(F)

submitted results from their own software as well as data from
PyRadiomics). Table 1 summarizes the software packages used in
this study as well as whether they used DICOM, DSO, or NIfTI for-
mats for the images and VOIs.

Each site and software package (including the authors
of PyRadiomics) was surveyed to determine if they were cal-
culating radiomic features according to the definitions
described by the IBSI (above). In some cases, the software
packages were developed by others and it could not be pre-
cisely determined how the features were being calculated. In
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the specific case of the GLCM entropy feature, there are sev-
eral choices in how this feature was calculated and this was
determined as best as possible. This included trying to deter-
mine parameters related to the formation of the co-occur-
rence matrix (distance, angle), quantization of gray levels
(HU), the number of levels to form the matrix, and whether
the implementation required both the source and destination
voxel, or just the source voxel, to be contained within the
VOI. Other parameters surveyed were related to the calcula-
tion of the feature including how the feature aggregation

was being performed [in Section 3.6 of the IBSI reference
manual (13)].

The survey of the participating sites and their software pack-
ages revealed that there was a wide range of approaches to calcu-
lating GLCM entropy. The initial decision was made to proceed
with whatever default parameters were being used in each site’s
software package(s) for the purposes of assessing agreement
using the DROs and patient data sets. The decision was also sub-
sequently made to determine if sites could harmonize their calcu-
lation of the GLCM entropy feature values by using as many

Site Software Image Data Used VOI Data Used
1. Stanford Quantitative Image Feature Engine (QIFE) (2, 24) DICOM DSO
1. Stanford PyRadiomics (10, 23) DICOM DSO
2. UCLA Quantitative Image Analysis (QIA) (25-27) DICOM NIfTI
2. UCLA PyRadiomics (10, 23) DICOM NIfTI
3.UW PMOD (28) DICOM NIFT]
3.UW PORTS (GLCM only) (29) DICOM NIFT]
4. USF Package 1 DICOM NIfTI
5. Moffit Package 2 DICOM NIfTI
6. Columbia Package 3 (17) DICOM NIfTI
7. Michigan MiViewer (30, 31) DICOM NIfTI
8. BC Cancer SERA (32) DICOM NIfTI
9. Penn (CBICA) CaPTK (11) DICOM NIFTI
10. UCSF PyRadiomics (10, 23) DICOM DSO
122 TOMOGRAPHY.ORG | VOLUME6 NUMBER2 | JUNE 2020
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Approximate Surface 2D 3D Mean Standard GLCM
DRO Volume Area Diameter Diameter Sphericity Intensity Deviation Kurtosis® Entropy
Uniform 0.004% 13.41% 0.23% 0.27% 12.82% 0.00% — — 1002%
Phantom
Intensity 0.004% 13.41% 0.23% 0.27% 12.82% 0.00% 0.11% 0.31% 50.9%
Varying
Phantom
Shape Varying 0.010% 12.27% 0.71% 0.18% 11.70% 0.00% — — 625%
Phantom

#CV results are expressed as a percentage for each feature and each DRO across all 13 submissions. Note that there was no value for standard deviation
and kurtosis for the uniform phantom and shape varying phantom, as the intensity values for these phantoms were all set to the same value (100 HU).

b w/Fisher correction.

common parameter settings (without rewriting any code) as
possible.

Specifically, sites harmonized their calculation of GLCM en-
tropy by using the following in their calculations:

1. Interpolate to isotropic 1-mm voxels.

2. Calculate the features in 3D with 13 angles and d = 1 mm.

3. Select 256 gray levels for quantization and use the voxels
just within the VOI for this quantization step (rather than
the entire image volume).

4. For the aggregation method, it seems that most software
packages were fixed, but for PyRadiomics, there were a
few options that could be selected. One was that features
were computed from each 3D directional matrix and then
averaged over the 3D directions to arrive at a single feature
value. Another option was that the feature value is com-
puted from a single matrix after merging all of the 3D
directional matrices. These correspond to options (e) “vol-
ume without merging” and (f) “volume with full merging,”
as described in Figure 3.3 of the IBSI reference manual
(13).

It should be noted here that these parameter settings were
not determined to be optimal in any way. Instead they were iden-
tified as the parameter settings most likely to be common among
the software implementations used by our investigators and
therefore most likely to lead to values that would be agreed upon
by different sites and software packages.

Reporting Results

Results of feature calculations were reported for 3 distinct phases
of this project: (a) DROs, (b) patient data sets, and (c) harmonized
GLCM entropy results for all patient data sets.

For the DROs, each site reported the value of each of the 9
indicated features for each DRO phantom using the indicated
software package. The result was that for each feature calculated
on each DRO, the mean value, standard deviation, and coefficient
of variation (CV) (expressed as a percentage) were calculated
across software packages. For the patient data sets, a similar
approach was used so that for each feature calculated on each
patient data set, the mean value, standard deviation, and CV
(expressed as a percentage) were calculated across software pack-
ages. For the harmonized GLCM entropy phase of the project,
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only the GLCM entropy value using the harmonized set of pa-
rameters was recorded for each patient image data set for each
software package; the mean value, standard deviation and CV
(expressed as a percentage) were calculated across software
packages.

RESULTS

The results from the 3 investigations (feature calculations per-
formed on DROs, feature calculations performed on patient stud-
ies, and GLCM feature calculations after using the harmonized
parameter settings described in the previous section) are
described in the following sections.

DRO Results

Results were received from 13 different submissions from 10 sites
for this part of the study; as indicated in Table 1 above, 2 sites
submitted results from their own locally developed software as
well as results from PyRadiomics, and 1 group submitted results
from their own locally developed software as well as a software
package called PMOD. Table 2 shows the results of the CV
expressed as percentage (CV%) by phantom and by feature.

Six of the 9 features calculated show excellent agreement
across submissions and phantoms with CV < 19; specifically,
the approximate volume, 2D diameter, 3D diameter, mean inten-
sity, standard deviation, and kurtosis (after Fisher adjustment)
features. Larger variations (12%-13%) were observed for the sur-
face area and sphericity features. Finally, extremely large varia-
tion values were observed (51%-1001%) for the GLCM entropy
feature across submissions and phantoms. One note about the
GLCM entropy variation is that in the uniform phantom and the
shape varying phantom, the intensity values within the VOI were
completely uniform and therefore most software packages
returned a GLCM entropy value of 0 (or very close to 0).
However, 2 submissions (out of 13) had nonzero GLCM entropy
values for these 2 phantoms, resulting in a very small mean value
across submissions (0.1 for the uniform phantom and 0.2 for the
shape varying phantom) which led to a very large CV.

Patient Data Set Results

For the patient data sets, 13 different submissions originating
from 10 sites were also received. Table 3 shows the mean and
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Coefficientof = Approximate  Surface 2D 3-D Mean Standard GLCM
Variation Volume Area Diameter Diameter Sphericity Intensity Deviation Kurtosis Entropy
Mean CV 0.00% 17.06% 8.44% 3.27% 16.90% 0.00% 0.07% —0.44% 36.24%
Standard 0.00% 2.49% 5.19% 2.25% 3.57% 0.00% 0.09% 0.74% 4.66%
Deviation
Cv

?The values are expressed as a percentage, for each feature calculated across all 10 patient nodule cases and all 13 submissions.

b \w/Fisher correction.

standard deviation of the CV as percentage (CV%) values for
each feature. This was calculated by first calculating the CV for
each patient data set across software packages and then calculat-
ing the mean and standard deviation of those CVs across all 10
patient cases.

These results show that only 4 of the 9 features calculated
show the same level of excellent agreement (CV < 1%) as
observed with the DROs; specifically, the approximate volume,
mean intensity, standard deviation, and kurtosis (after Fisher
adjustment) features. Slightly larger variations (mean CV of 3%-
90p) were observed for 2D diameter and 3D diameter features.
Larger variations (mean CV = 17%) were again observed for the
surface area and sphericity features. Finally, larger variations
were observed (mean CV = 37%) for the GLCM entropy feature
across submissions and patient cases. Note that because these
were patient data sets and the intensity values were not com-
pletely uniform, the mean GLCM entropy values for each patient
data set actually ranged from 5.4 to 7.8 (with a much wider range

CV (%)
Harmonized CV (%) Default Settings
Case Settings (Table 3 results)
1 18.25% 41.80%
2 18.02% 38.55%
3 20.05% 30.89%
4 30.34% 43.57%
5 15.15% 33.93%
6 21.69% 37.08%
7 14.49% 39.37%
8 25.69% 29.98%
9 14.06% 35.70%
10 17.51% 31.55%
Mean 19.52% 36.24%
5“’;:;?;‘3“ 5.19% 4.66%

The values are expressed as a percentage for each case (across sub-
missions) as well as the mean and standard deviation across cases.
The first column reports the results when using the harmonized pa-
rameters described above. The second column reports the results
when using the default (non-harmonized) parameters.

124

of individual values from different software packages); this in
turn led to smaller CV values than those observed for uniform
DROs.

Results from GLCM Entropy Harmonization

For this final investigation, 11 submissions from 9 sites were
received in which the harmonized parameter settings for the
GLCM entropy calculation (described above) were used. Table 4
shows the individual CV values for each case (calculated across
submissions) under both the harmonized parameter settings and
each site’s default (nonharmonized) settings used to obtain the
results in the previous section. Table 4 also shows the mean and
standard deviation of the CV as percentage (CV%) values for
each feature across cases (and submissions).

These results show a substantially reduced CV when the pa-
rameters are harmonized across software packages compared
with CV when default settings are used (mean CV of 19.3% vs
36.2%). This is true for each individual case as well. However, it
should also be noted that the agreement is still relatively modest
(mean CV% ~200% across cases and software packages), which
indicates there are still outstanding issues to resolve to obtain the
levels of agreement seen in the features with the excellent levels
of agreement (eg, approximate volume, mean intensity, etc.).

DISCUSSION

The purpose of this work was to investigate the level of agree-
ment among radiomic features that could be achieved when
computed by several groups using different software packages. A
secondary purpose of this work was to use these investigations to
identify issues that led to differences in feature values produced
by software packages and to determine if these issues could be
readily addressed.

The use of DROs was extremely helpful for both of these pur-
poses and especially the latter. Because the size, shape, and in-
tensity values of each DRO was known, each object provided a
unique opportunity to identify when software packages were cal-
culating different values for the features of interest and allowed
investigators opportunities to understand the underlying causes
behind these differences. Some of these will be discussed in the
following paragraphs.

The use of specific lesions in patient data sets was also very
helpful in pursuing this project’s primary purpose, in that the
lesions studied did represent clinical objects of interest. In addi-
tion, the 10 cases selected represented different challenges in
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terms of lesion size and composition, slice thickness, and slice
spacing as well as manufacturer (which influences expected
aspects, such as contrast-to-noise ratios, as well as unexpected
ones, such as the DICOM field rescale intercept).

When our investigators performed this task under very
tightly controlled conditions of the same feature definitions,
using same image data and the same VOI definition, some fea-
tures showed excellent agreement (CV < 1%). This was true for
the approximate volume, mean intensity, standard deviation,
and kurtosis features. The definitions of these features are rela-
tively straightforward and there are not many choices in parame-
ters when calculating these features. The one exception was in
the kurtosis feature where some software packages do not
include the Fisher adjustment (subtracting 3 from the sum). With
the use of the DROs, this was readily identified and corrected.

For other features, the agreement between software packages
was not quite as good. The 3D diameter feature did show excel-
lent agreement between software packages for the DROs (CV <
1%), but showed slightly larger variation when more irregularly
shaped objects were used in the patient data sets; however, the
resulting variability was still reasonably low (CV < 3%) across
all 10 patient data sets and software packages. The 2D diameter
feature (which was not actually defined by the IBSI) showed
larger variation than the 3D diameter. This increased variation
may be the result of differences in approach that were allowed
for this study. As described above, some sites calculated diameter
on the slice with the largest area, while others calculated the di-
ameter for each slice and used the maximum from all slices.
Thus, while the DRO results showed little variation (CV < 1% for
the spherical phantoms and CV < 5% for the shape varying
phantom), there were larger variations (CV = 10%) for the patient
data sets, which are likely because of the variations in approach
described here. Our investigation did not constrain which
approach should be used (nor did we specify the image on which
the diameter calculation should be made) so as to reflect condi-
tions typically encountered in the clinic (such as making RECIST
measurements for a clinical trial).

The surface area and sphericity features showed larger vari-
ability (CV = 12%-18%) in both DRO and patient data set results.
First, it should be noted that these 2 features are related, in that
sphericity uses the surface area (and volume) in its definition. It
should also be noted that the IBSI description of the surface area
feature is specific to the use of the mesh-based calculation method.
This does require some specification (either implicitly or explicitly)
of the size or number of triangles used in the mesh, which was not
constrained in this investigation. In addition, some of the software
packages used may not have used the mesh-based approach, but
may have calculated an approximation to surface area by count-
ing the areas of surface voxels. This disparity in approaches is
likely one source of variability in this study.

Finally, the GLCM entropy feature showed the largest
amount of variability across software packages. For the DROs,
the CV was 51% for the intensity varying phantom and much
higher values for the uniform and shape varying phantoms.
These latter high values were explored and found to be the prod-
uct of 2 software packages that calculated nonzero values for a
completely uniform object. This was investigated and determined
that when forming the co-occurrence matrices, some software
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packages check to determine if both the source and destination
voxels are contained within the VOI while others only check to
determine if the source voxel is contained within the VOI. In the
former situation, both voxels are within the VOI; for the DRO
with uniform voxel values, there will be no intensity variation,
and the GLCM entropy value will be 0. In the latter situation,
near the boundary of the VOI, the destination voxel may be out-
side the VOI and then voxels outside the VOI are included in the
calculation. For the DRO with uniform values (100 HU) inside the
boundary and uniform but different values (—1000 HU) outside
the boundary, this will lead to nonzero values for the GLCM en-
tropy values.

Furthermore, for the patient image data sets, the GLCM en-
tropy values showed larger variations (CV = 36% across 10 cases)
than other features. We hypothesized that this was due to the
large number of choices and parameter settings that go into both
the formation of the GLCM matrix and the calculation of the fea-
ture itself. These include (but are not limited to) issues related to:
(1) any interpolation scheme used either for the image data at the
beginning of the matrix formation or later during the formation
process; (2) the choice of distance and angle or the use of multi-
ple distances and angles (and any subsequent averaging over dis-
tances and/or angles); (3) the discretization scheme (scale and
number of quantization bins) used; and (4) the feature aggrega-
tion scheme (IBSI describes 6 different schemes).

To determine if the effects of these choices and parameter
settings could be mitigated, investigators agreed to a reference
set of conditions described in the section on Harmonization of
GLCM entropy and recalculated their results. Our results showed
that the variability was reduced (CV reduced from 36% to 19%),
but still did not approach that of the features with excellent
agreement. This indicates that even this level of harmonization
was not sufficient to achieve excellent agreement across software
packages with this complex feature.

Also, even after harmonization, the results in Table 4 indi-
cated some possible dependence of agreement (CV%) on lesion
size. Specifically, lesions 3 and 8 were the smallest lesions, but
showed larger than average CV values. In addition, lesion 4 was
a calcified lesion and it also showed large CV values across pack-
ages. Thus, lesion size and density may have an impact on this
specific feature value, but we did not have a large enough sample
size of lesions to explore this fully in the current study.

In summary, this study has shown that excellent agreement
can be achieved for some features when standardized definitions
of features are provided such as those in the IBSI reference manual.
This led to excellent agreement among software packages for fea-
tures such as approximate volume, mean intensity, standard devi-
ation, kurtosis (with Fisher adjustment), and even 3D diameter.

For more complex features such as surface area, sphericity, 2D
diameter, and even GLCM entropy, very complete definitions of
specific approaches and parameter settings used (eg mesh size,
interpolation schemes, quantization levels, etc.) are needed to
achieve the levels of agreement observed in the other features.

There are several limitations of this study. This study does
not address all sources of variation in the calculation of radiomic
features. For example, this study did not address issues related to
image segmentation and the variability introduced when differ-
ent VOIs are identified for a given object (7) or the effects of
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different image acquisition and reconstruction conditions on fea-
ture variability (16, 17). This study also does not address the very
important question of which features actually provide informa-
tion relating to a specific clinical task; for example, this study
did not address which features are useful in discriminating be-
nign from malignant lesions or responders from nonresponders
in clinical trials. As noted previously, some features may be
shown to be very stable over a wide range of segmentation or ac-
quisition and reconstruction conditions (eg feature value may be
constant), but may not necessarily be useful in performing a
given clinical task such as differentiating between benign and
malignant lesions. This investigation was also limited to individ-
ual radiomic feature values and did not extend to investigations
into “feature signatures” or functions that use multiple radiomic
features, which would of course depend on the calculation of
these underlying features. While evaluating the robustness of
radiomic signatures was beyond the scope of the current investi-
gation, this would be a very important next step in evaluating
the use of combinations of radiomic features in clinical tasks.

In addition, this study investigated a limited number of fea-
tures that represent a small fraction of the radiomic features
described in the literature and specifically in the IBSI refer-
ence manual (13). This was done intentionally to keep the
study size manageable and to allow thorough investigation of
the features that were included in the study. Therefore, the
definition and implementation issues for all radiomic features
were not all addressed in this study; however, we believe
that this exercise is instructive in identifying some underlying
issues that need to be addressed with regard to the reproduci-
bility of radiomic features.

It should be noted that 3 different sites all submitted results
using the open source software package PyRadiomics (10, 23).
This may have led to somewhat artificially low CV (CV9) results
in some instances. This concern is somewhat offset by the obser-
vation that several features were observed to have very low
(CV < 190) across all software packages. On the other hand, even
these 3 sites did not achieve complete agreement for the GLCM
entropy feature, despite the harmonization steps taken, although
the agreement was better than that across all packages (mean CV
was 10% for just PyRadiomics, compared to 19% observed across
all packages).

The sites that used PyRadiomics noted that the package is
built nightly, which may result in slightly different versions of
the code and a potential source of variation. Moreover, because
PyRadiomics can use both DSO and NIfTI segmentation objects
(and 2 of our sites used DSOs while 1 used NIfTI), this may con-
tribute to slight variations in feature values.

In addition, there were several lessons learned by the partici-
pating sites in this study. Many of these relate to assumptions
that sites (and specific software packages) have made that are of-
ten implicit or are the result of implementation of certain mathe-
matical operations or parameters for calculation of a feature by a
site or in a specific package. These variations are difficult to iden-
tify without going through an exercise such as using a reference
set of images (both DROs and patient data sets) and comparing
results. These lessons include the following:

1. When calculating volume, slice spacing should be used
rather than slice thickness [DICOM field (0018, 0050)].
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Slice spacing is not a specific DICOM field, but can be cal-
culated as the difference in either the z location of adjacent
images using (0020, 0032) or (0020, 1041). This can be
used to calculate features such as approximate volume.
Using slice thickness can lead to overestimation of volume
values in some cases. In many CT studies, the slice spacing
and slice thickness values may be the same (eg, 2.5-mm-
thick images spaced 2.5 mm apart), but the online supple-
mental Appendix shows that 6 of our 10 patient cases had
slice spacing values different from the slice thickness. In
these cases, using slice thickness instead of spacing can
lead to erroneous volume values.

2. ldentification of when interpolation of image data is taking
place. In some cases, this interpolation takes place explic-
itly when image data are read in, and in other cases, it may
occur implicitly or as part of the calculation of a feature.
The interpolation as well as the interpolation scheme (eg,
nearest neighbor, trilinear, tricubic convolution, tricubic
spline interpolation, etc.) can lead to variations in feature
values.

3. The methods for interpretation of VOI boundaries and the
management of “holes” within a VOI (eg whether the soft-
ware would “fill the hole” or leave it “as is”) could be
potential sources of variance between software packages.

4. There were also several feature-specific issues. For
example, when forming GLCM matrix, there were dif-
ferences between software packages in whether both the
source and destination voxels are checked to be within
VOI or if just the source voxel was checked. Another
example was that the surface area feature is defined by
a mesh-based representation in the IBSI reference man-
ual (Section 3.1.3 of that manual), but our sites report-
ing feature values may not use that same approach. In
addition, even with the mesh-based representation,
there still is variability introduced by the selection of
parameters such as the mesh size.

5. Finally, the GLCM entropy feature was specifically cho-
sen for analysis in this study to be representative of the
complexity of commonly used texture features in radio-
mics studies. This feature has several parameters and
approaches involved in its calculation (as identified
above), and the choice of each can contribute to vari-
ability. Ourresultsshowed that someissues could be miti-
gated by using similar parameters, but others may require
re-coding of the software. In general, such complex fea-
tures can be replicated universally only if a common soft-
ware package (eg, PyRadiomics or similar) is used.
However, if such an approach is considered, the commu-
nity should thoroughly evaluate the specific definitions
and implementations of the features in the potential com-
mon package and reach consensus that it is acceptable as
the “gold standard” beforerecommendingitsuse.

Based on the initial purpose of this study, its results and the
lessons learned from this study, this group recommends the fol-
lowing to improve the reproducibility of results:

1. That authors provide detailed description of the image
analysis, image pre-processing, and feature definitions in
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future studies reporting results involving radiomic features
so that an independent site could reproduce the results of
the study.

2. That IBSI feature definitions be used in manuscripts wher-
ever possible, including the feature coding descriptors
whenever possible.

3. That DICOM develop a DICOM standard for reporting fea-
tures according to the definitions and features described in
the IBSI reference manual.

4. That reporting structures support flexibility that will allow
additional information regarding feature descriptions (in
case the IBSI definition is not quite complete) and will allow
for further development of future features to be included.

5. That publication of results should include both the soft-
ware name and version number. Although this might be
difficult for open source software packages that undergo
frequent builds and releases, we encourage the description
of the used version in as much detail as possible.

6. That radiomics software packages follow unique release
version numbering.

7. That software source code be released whenever possible
(as has been done by several packages used in this study—
see Table 1). Mechanisms such as GitHub have proven to
be extremely useful in this regard.
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